ADE7854/ADE7858/ADE7868/ADE7878
Data Sheet
Table 26. Values Written to the CF1DEN, CF2DEN, CF3DEN, SAGLVL, and ZXTOUT Registers May Not Be Immediately Used By
ADE7854 , ADE7858 , ADE7868 , ADE7878 [er002, Version = 2 Silicon]
Background
Issue
Workaround
Related Issues
Usually, the CF1DEN, CF2DEN, CF3DEN, SAGLVL, and ZXTOUT registers initialize immediately after power-up or after a
hardware/software reset. After the RUN register is set to 1, the energy-to-frequency converter (for CF1DEN, CF2DEN, and CF3DEN), the
phase voltage sag detector (for SAGLVL), and the zero-crossing timeout circuit (for ZXTOUT) use these values immediately.
After the CF1DEN register is initialized with a new value after power-up or a hardware/software reset, the new value may be
delayed and, therefore, not immediately available for use by the energy-to-frequency converter. It is, however, used by the
converter after the first high-to-low transition is triggered at t the CF1 pin using the CF1DEN default value (0x0).
CF2DEN and CF3DEN registers present similar behavior at the CF2 and CF3 pins, respectively. CF1DEN, CF2DEN and CF3DEN
above behavior has been corrected in Version = 4 silicon.
After the SAGLVL register is initialized with a new value after power-up or a hardware or software reset, the new value may be
delayed and not available for immediate use by the phase voltage sag detector. However, it is used by the detector after at least
one phase voltage rises above 10% of the full-scale input at the phase voltage ADCs.
After the ZXTOUT register is initialized with a new value after power-up or a hardware or software reset, the new value may be
delayed and not available for immediate use by the zero-crossing timeout circuit. However, the circuit does use the new value
after at least one phase voltage rises above 10% of the full-scale input at the phase voltage ADCs.
If the behavior outlined in the Issue row does not conflict with the meter specification, then the new values of the CF1DEN,
CF2DEN, CF3DEN, SAGLVL, and ZXTOUT registers may be written one time only.
If the behavior is not acceptable, write the new value into the CF1DEN, CF2DEN, and CF3DEN registers eight consecutive times.
This ensures the probability of the new value not being considered immediately by the energy-to-frequency converter becomes
lower than 0.2 ppm.
Usually, at least one of the phase voltages is greater than 10% of full scale after power-up or after a hardware/software reset. If
this cannot be guaranteed, then the SAGLVL and ZXTOUT registers should also be written eight consecutive times to reduce the
probability of not being considered immediately by the phase voltage sag detector and zero-crossing timeout circuit.
None.
Table 27. The Read-Only RMS Registers May Show the Wrong Value [er003, Version = 2 Silicon]
Background
Issue
Workaround
Related Issues
The read-only rms registers (AVRMS, BVRMS, CVRMS, AIRMS, BIRMS, CIRMS, and NIRMS) can be read without restrictions at
any time.
The fixed function DSP of ADE7854 , ADE7858 , ADE7868 , and ADE7878 computes all the powers and rms values in a loop
with a period of 125 μs (8 kHz frequency). If two rms registers are accessed (read) consecutively, the value of the second
register may be corrupted. Consequently, the apparent power computed during that 125 μs cycle is also corrupted. The
rms calculation recovers in the next 125 μs cycle, and all the rms and apparent power values compute correctly.
The issue appears independent of the communication type, SPI or I 2 C, when the time between the start of two
consecutive rms readings is lower than 265 μs. The issue affects only the rms registers; all of the other registers of
ADE7854 , ADE7858 , ADE7868 , and ADE7878 can be accessed without any restrictions.
The rms registers can be read one at a time with at least 265 μs between the start of the readings. DREADY interrupt at the
IRQ0 pin can be used to time one rms register reading every three consecutive DREADY interrupts. This ensures 375 μs
between the start of the rms readings.
Alternatively, the rms registers can be read interleaved with readings of other registers that are not affected by this
restriction as long as the time between the start of two consecutive rms register readings is 265 μs.
None.
Table 28. To Obtain Best Accuracy Performance, Internal Setting Must Be Changed [er004, Version = 2 Silicon]
Background
Issue
Workaround
Related Issues
Internal default settings provide best accuracy performance for ADE7854 , ADE7858 , ADE7868 , and ADE7878 .
It was found that if a different setting is used, the accuracy performance can be improved.
To enable a new setting for this internal register, execute two consecutive 8-bit register write operations:
The first write operation: 0xAD is written to Address 0xE7FE.
The second write operation: 0x01 is written to Address 0xE7E2.
The write operations must be executed consecutively without any other read/write operation in between. As a
verification that the value was captured correctly, a simple 8-bit read of Address 0xE7E2 should show the 0x01 value.
None.
Rev. H | Page 78 of 100
相关PDF资料
EVAL-ADE7880EBZ BOARD EVAL FOR ADE7880
EVAL-ADE7953EBZ BOARD EVAL FOR ADE7953
EVAL-ADF4002EBZ1 BOARD EVAL FOR ADF4002
EVAL-ADG788EBZ BOARD EVALUATION FOR ADG788
EVAL-ADM1021AEB BOARD EVAL FOR ADM1021
EVAL-ADM1023EB BOARD EVAL FOR ADM1023
EVAL-ADM1031EB BOARD EVAL FOR ADM1031
EVAL-ADM1062TQEBZ BOARD EVALUATION FOR ADM1062TQ
相关代理商/技术参数
EVAL-ADE7880EBZ 功能描述:BOARD EVAL FOR ADE7880 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:* 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- 主要目的:电源管理,电池充电器 嵌入式:否 已用 IC / 零件:MAX8903A 主要属性:1 芯锂离子电池 次要属性:状态 LED 已供物品:板
EVAL-ADE7880EBZ 制造商:Analog Devices 功能描述:ADE7880, ENERGY METER, 3 PH, SPI, I2C, E
EVAL-ADE7913EBZ 制造商:AD 制造商全称:Analog Devices 功能描述:3-Channel, Isolated, Sigma-Delta ADC with SPI
EVAL-ADE7953EBZ 功能描述:BOARD EVAL FOR ADE7953 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
EVAL-ADF4001EBZ2 制造商:Analog Devices 功能描述:Evaluation Board For Pll Frequency Synthesizer 制造商:Analog Devices 功能描述:ADF4001 PLL SYNTHESIZER EVAL BOARD
EVAL-ADF4002EB1 制造商:Analog Devices 功能描述:EVAL BOARD - Bulk
EVAL-ADF4002EBZ1 功能描述:BOARD EVAL FOR ADF4002 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- 主要目的:电源管理,电池充电器 嵌入式:否 已用 IC / 零件:MAX8903A 主要属性:1 芯锂离子电池 次要属性:状态 LED 已供物品:板
EVAL-ADF4007EBZ1 功能描述:BOARD EVALUATION FOR ADF4007EB1 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源